Abstract
Depth boundaries often lose sharpness when upsampling from low-resolution (LR) depth maps especially at large upscaling factors. We present a new method to address the problem of depth map super resolution in which a high-resolution (HR) depth map is inferred from a LR depth map and an additional HR intensity image of the same scene. We propose a Multi-Scale Guided convolutional network (MSG-Net) for depth map super resolution. MSG-Net complements LR depth features with HR intensity features using a multi-scale fusion strategy. Such a multi-scale guidance allows the network to better adapt for upsampling of both fine- and large-scale structures. Specifically, the rich hierarchical HR intensity features at different levels progressively resolve ambiguity in depth map upsampling. Moreover, we employ a highfrequency domain training method to not only reduce training time but also facilitate the fusion of depth and intensity features. With the multiscale guidance, MSG-Net achieves state-of-art performance for depth map upsampling.
Original language | English |
---|---|
Title of host publication | Computer Vision - 14th European Conference, ECCV 2016, Proceedings |
Editors | Bastian Leibe, Jiri Matas, Nicu Sebe, Max Welling |
Publisher | Springer Verlag |
Pages | 353-369 |
Number of pages | 17 |
ISBN (Print) | 9783319464862 |
DOIs | |
Publication status | Published - 2016 |
Externally published | Yes |
Event | 14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands Duration: Oct 8 2016 → Oct 16 2016 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 9907 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 14th European Conference on Computer Vision, ECCV 2016 |
---|---|
Country/Territory | Netherlands |
City | Amsterdam |
Period | 10/8/16 → 10/16/16 |
Bibliographical note
Publisher Copyright:© Springer International Publishing AG 2016.
ASJC Scopus Subject Areas
- Theoretical Computer Science
- General Computer Science