Abstract
Heavy metal pollution, particularly from copper ions (Cu2+), poses a significant threat to both the ecological environment and human health. However, traditional copper ion analysis techniques are often hindered by the need for expensive equipment, labor-intensive sample preparation and skilled operation, which limits their effectiveness for field and real-time applications. In this work, we report a novel near-infrared aptamer sensor (NIRApt) that originates from the binding reaction between the DNA aptamer AptCu and the fluorescent small molecule crystal violet (CV), enabling rapid detection of Cu2+ through the competitive effect of Cu2+ with AptCu. This sensor shows a significant enhancement in NIR fluorescence after aptamer binding. NIRApt exhibits superior performance, requiring only three core components to achieve a fast response time and operational simplicity in less than a minute. The sensor shows high sensitivity with a detection limit as low as 61 nM, making it suitable for the detection of trace amounts of Cu2+ in diverse samples. The efficacy of NIRApt has been validated through successful applications in real water samples, highlighting its promising potential for environmental monitoring.
Original language | English |
---|---|
Journal | Analytical Methods |
DOIs | |
Publication status | Accepted/In press - 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2025 The Royal Society of Chemistry.
ASJC Scopus Subject Areas
- Analytical Chemistry
- General Chemical Engineering
- General Engineering