DifFace: Blind Face Restoration With Diffused Error Contraction

Zongsheng Yue, Chen Change Loy*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with L1 loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations.

Original languageEnglish
Pages (from-to)9991-10004
Number of pages14
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume46
Issue number12
DOIs
Publication statusPublished - 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 1979-2012 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition
  • Computational Theory and Mathematics
  • Artificial Intelligence
  • Applied Mathematics

Keywords

  • Blind face restoration
  • diffusion model
  • error contraction
  • face inpainting

Cite this