Distilling Essence of a Question: A Hierarchical Architecture for Question Quality in Community Question Answering Sites

Mun Kit Ho, Sivanagaraja Tatinati, Andy W.H. Khong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Community question answering (CQA) sites have grown to be useful platforms where users search for highly specific information to resolve a problem. However, the significant increase in the number of user-generated content with high variance in quality on these sites not only presents challenges for user navigation but also outgrow the community's peer reviewing capacity. This necessitates ways to automatically assess the quality of new questions so as to maintain quality of content served to its users. While existing methods commonly employ social network indicators as features, our model aims to avoid social influence biases arising from these indicators by predicting the quality from semantic evaluation of the question text. Formulation of the proposed model is non-trivial as it requires the extraction of meaningful features from the noisy question text at different granularities while filtering redundant information. In this work, a neural architecture is proposed to address this problem by aggregating the textual features extracted at word- and sentence-level in a hierarchical manner. In addition, a unique attention mechanism that focuses on sentence segments for interpreting a question is developed. This new mechanism employs the global topical information from common problem contexts. The proposed approach is verified on the Stack Overflow question dataset and is shown to outperform existing neural models.

Original languageEnglish
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
Publication statusPublished - Jul 2020
Externally publishedYes
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period7/19/207/24/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Artificial Intelligence

Keywords

  • community question-answering
  • question quality

Fingerprint

Dive into the research topics of 'Distilling Essence of a Question: A Hierarchical Architecture for Question Quality in Community Question Answering Sites'. Together they form a unique fingerprint.

Cite this