Abstract
Plasmonic semiconductor nanoparticles (NPs) with wide-range tailorable localized surface plasmon resonance (LSPR) hold exciting prospects on optical signal amplification. In this work, by precisely controlling oxygen vacancies around W atoms, plasmonic bismuth tungstate Bi2WO6 (BWO) nanosheets are constructed to enhance emission of Yb3+/Er3+ co-doped NaYF4 upconversion nanoparticles (UCNPs). In the optimal conditions, the UCNPs/BWO-2 hybrids exhibit over three-order (1260-fold) enhancement selectively on the 520 nm emission owing to the strong LSPR-induced electrical field and photothermal effect. Moreover, it is found that the highly efficient emission of UCNPs/BWO-2 allows it to act as a thermometer to monitor the real-time local temperature with high absolute sensitivity of 5.8 × 10−3 K−1 in wide temperature range (up to 990 K). For proof-of-concept, the dual functions of plasmonic UCNPs/BWO-2 hybrids on bioimaging and photothermal therapy for cancer cells are demonstrated that can be completely killed within 5 min under 980 nm irradiation. As far as it is known, this work reaches a new level on UCNPs emission enhancement by plasmonic semiconductor, exceeding most plasmonic metals.
Original language | English |
---|---|
Article number | 2200197 |
Journal | Laser and Photonics Reviews |
Volume | 16 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
Keywords
- bioimaging and phototherapy
- plasmonic semiconductors
- surface plasmon resonance
- temperature sensing
- upconversion emission enhancement