Duolando: FOLLOWER GPT WITH OFF-POLICY REINFORCEMENT LEARNING FOR DANCE ACCOMPANIMENT

Li Siyao, Tianpei Gu, Zhengyu Lin, Zhitao Yang, Ziwei Liu, Henghui Ding, Lei Yang*, Chen Change Loy*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

8 Citations (Scopus)

Abstract

We introduce a novel task within the field of 3D dance generation, termed dance accompaniment, which necessitates the generation of responsive movements from a dance partner, the "follower", synchronized with the lead dancer's movements and the underlying musical rhythm. Unlike existing solo or group dance generation tasks, a duet dance scenario entails a heightened degree of interaction between the two participants, requiring delicate coordination in both pose and position. To support this task, we first build a large-scale and diverse duet interactive dance dataset, DD100, by recording about 117 minutes of professional dancers' performances. To address the challenges inherent in this task, we propose a GPT-based model, Duolando, which autoregressively predicts the subsequent tokenized motion conditioned on the coordinated information of the music, the leader's and the follower's movements. To further enhance the GPT's capabilities of generating stable results on unseen conditions (music and leader motions), we devise an off-policy reinforcement learning strategy that allows the model to explore viable trajectories from out-of-distribution samplings, guided by human-defined rewards. Based on the collected dataset and proposed method, we establish a benchmark with several carefully designed metrics.

Original languageEnglish
Publication statusPublished - 2024
Externally publishedYes
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: May 7 2024May 11 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period5/7/245/11/24

Bibliographical note

Publisher Copyright:
© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.

ASJC Scopus Subject Areas

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Cite this