Dynamical evolution of anisotropic response of type-II Weyl semimetal TaIrTe4 under ultrafast photoexcitation

Xiao Zhuo, Jiawei Lai, Peng Yu, Ze Yu, Junchao Ma, Wei Lu, Miao Liu, Zheng Liu, Dong Sun*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)

Abstract

Layered type-II Weyl semimetals, such as WTe2, MoTe2, and TaIrTe4 have been demonstrated as a supreme photodetection material with topologically enhanced responsivity and specific sensitivity to the orbital angular momentum of light. Toward future device applications with high performance and ultrafast response, it is necessary to understand the dynamical processes of hot carriers and transient electronic properties of these materials under photoexcitation. In this work, mid-infrared ultrafast spectroscopy is performed to study the dynamical evolution of the anisotropic response of TaIrTe4. The dynamical relaxation of photoexcited carriers exhibits three exponential decay components relating to optical/acoustic phonon cooling and subsequent heat transfer to the substrate. The ultrafast transient dynamics imply that TaIrTe4 is an ideal material candidate for ultrafast optoelectronic applications, especially in the long-wavelength region. The angle-resolved measurement of transient reflection reveals that the reflectivity becomes less anisotropic in the quasi-equilibrium state, indicating a reduction in the anisotropy of dynamical conductivity in presence of photoexcited hot carriers. The results are indispensable in material engineering for polarization-sensitive optoelectronics and high field electronics.

Original languageEnglish
Article number101
JournalLight: Science and Applications
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

ASJC Scopus Subject Areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Dynamical evolution of anisotropic response of type-II Weyl semimetal TaIrTe4 under ultrafast photoexcitation'. Together they form a unique fingerprint.

Cite this