Abstract
Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods are proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible architectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable - the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy that spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400×search time reduction in comparison to the evolutionary-based state of the art [19] (8 v.s. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies. Codes and models will be released to facilitate future research.
Original language | English |
---|---|
Article number | 9157571 |
Pages (from-to) | 11393-11401 |
Number of pages | 9 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
Publication status | Published - 2020 |
Externally published | Yes |
Event | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States Duration: Jun 14 2020 → Jun 19 2020 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition