Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite

Zhisheng Lv, Yifei Luo, Yuxin Tang, Jiaqi Wei, Zhiqiang Zhu, Xinran Zhou, Wenlong Li, Yi Zeng, Wei Zhang, Yanyan Zhang, Dianpeng Qi, Shaowu Pan, Xian Jun Loh, Xiaodong Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

347 Citations (Scopus)

Abstract

Although some progress has been made on stretchable supercapacitors, traditional stretchable supercapacitors fabricated by predesigning structured electrodes for device assembling still lack the device-level editability and programmability. To adapt to wearable electronics with arbitrary configurations, it is highly desirable to develop editable supercapacitors that can be directly transferred into desirable shapes and stretchability. In this work, editable supercapacitors for customizable shapes and stretchability using electrodes based on mechanically strengthened ultralong MnO2 nanowire composites are developed. A supercapacitor edited with honeycomb-like structure shows a specific capacitance of 227.2 mF cm−2 and can be stretched up to 500% without degradation of electrochemical performance, which is superior to most of the state-of-the-art stretchable supercapacitors. In addition, it maintains nearly 98% of the initial capacitance after 10 000 stretch-and-release cycles under 400% tensile strain. As a representative of concept for system integration, the editable supercapacitors are integrated with a strain sensor, and the system exhibits a stable sensing performance even under arm swing. Being highly stretchable, easily programmable, as well as connectable in series and parallel, an editable supercapacitor with customizable stretchability is promising to produce stylish energy storage devices to power various portable, stretchable, and wearable devices.

Original languageEnglish
Article number1704531
JournalAdvanced Materials
Volume30
Issue number2
DOIs
Publication statusPublished - Jan 11 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ASJC Scopus Subject Areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Keywords

  • editable supercapacitors
  • manganese dioxide nanowires
  • programmability
  • stretchable devices

Fingerprint

Dive into the research topics of 'Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite'. Together they form a unique fingerprint.

Cite this