Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture

Boon Chin Heng, Paula Porto Bezerra, Peter Rainer Preiser, S. K. Alex Law, Yun Xia, Freddy Boey, Subbu S. Venkatraman

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Background aims. Characterization of endothelial cell-biomaterial interaction is crucial for the development of blood-contacting biomedical devices and implants. However, a crucial parameter that has largely been overlooked is the cell-seeding density. Methods. This study investigated how varying cell-seeding density influences human umbilical vein endothelial cell (HUVEC) proliferation on three different substrata: gelatin, tissue culture polystyrene (TCPS) and poly-l-lactic acid (PLLA). Results. The fastest proliferation was seen on gelatin, followed by TCPS and PLLA, regardless of seeding density. On both TCPS and gelatin, maximal proliferation was attained at an initial seeding density of 1000 cells/cm2. At seeding densities above and below 1000 cells/cm2, the proliferation rate decreased sharply. On PLLA, there was a decrease in cell numbers over 7 days of culture, below a certain threshold seeding density (c. 2500-3000 cells/cm2), which meant that some of the cells were dying off rather than proliferating. Above this threshold seeding density, HUVEC displayed slow proliferation. Subsequently, quantitative real-time polymerase chain reaction (RT-qPCR) analysis of eight gene markers associated with adhesion and endothelial functionality (VEGF-A, integrin-α5, VWF, ICAM1, ICAM2, VE-cadherin, endoglin and PECAM1) was carried out on HUVEC seeded at varying densities on the three substrata. A significant downregulation of gene expression was observed at an ultralow cell-seeding density of 100 cells/cm2. This was accompanied by an extremely slow proliferation rate, probably because of an acute lack of intercellular contacts and paracrine signaling. Conclusion. Hence, this study demonstrates that seeding density has a profound effect on the proliferation and gene expression profile of endothelial cells seeded on different biomaterial surfaces.

Original languageEnglish
Pages (from-to)606-617
Number of pages12
JournalCytotherapy
Volume13
Issue number5
DOIs
Publication statusPublished - May 2011
Externally publishedYes

ASJC Scopus Subject Areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Genetics(clinical)
  • Cell Biology
  • Transplantation
  • Cancer Research

Keywords

  • endothelial
  • gelatin
  • gene expression
  • poly-L-lactic acid
  • polystyrene
  • seeding density

Fingerprint

Dive into the research topics of 'Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture'. Together they form a unique fingerprint.

Cite this