Abstract
This paper presents a pioneer study on the effects of self-healing on the flexural fatigue performance of engineered cementitious composites (ECCs), a unique class of high-performance fiber-reinforced cementitious composites (HPFRCC) exhibiting tensile strain-hardening behavior with tensile strain capacity in excess of 3% with only 2% or less fiber content by volume. Results show that self-healing greatly extends the fatigue life of ECC because water/dry conditioning not only heals the matrix cracks but also recovers the fiber/matrix interfacial bonds which leads to increased fiber-bridging strength. ECC fatigue life increases with increasing fatigue pre-damage level because higher fatigue pre-loading cycles together with water/dry conditioning troubleshoots more potential failure planes. Repeated healing at lower pre-damage level is feasible and significantly extends fatigue life of ECC.
Original language | English |
---|---|
Pages (from-to) | 145-152 |
Number of pages | 8 |
Journal | Cement and Concrete Composites |
Volume | 94 |
DOIs | |
Publication status | Published - Nov 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Elsevier Ltd
ASJC Scopus Subject Areas
- Building and Construction
- General Materials Science
Keywords
- Engineered cementitious composites (ECCs)
- Fatigue
- Fiber-bridging
- Fiber/matrix interface
- Self-healing