Abstract
Efficiency enhancement in plasmonic bulk heterojunction (PCDTBT:PCBM) organic solar cells (OSCs) is demonstrated with the integration of large-area periodic Ag nanotriangle (NT) arrays (that were fabricated using the cost-effective, high-throughput nanosphere lithography technique) in the OSC device. The improvements to the power conversion efficiency (from 4.24 to 4.52%) and to the short circuit current density (by ∼12%) are attributed to an increase in exciton generation induced by the strong local E-field and the scattering generated by the localized surface plasmon resonance of the hexagonal NT arrays. These findings are validated by a range of steady-state and transient optical spectroscopy and correlated with device performance data. Importantly, our work demonstrates the feasibility of integrating a simple cost-effective, tailorable, and scalable nanofabrication technique with existing OSC fabrication processes.
Original language | English |
---|---|
Pages (from-to) | 14820-14825 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 116 |
Issue number | 28 |
DOIs | |
Publication status | Published - Jul 19 2012 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films