Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic

Vincent J. Lynch*, Oscar C. Bedoya-Reina, Aakrosh Ratan, Michael Sulak, Daniela I. Drautz-Moses, George H. Perry, Webb Miller, Stephan C. Schuster

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)

Abstract

Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP) channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.

Original languageEnglish
Pages (from-to)217-228
Number of pages12
JournalCell Reports
Volume12
Issue number2
DOIs
Publication statusPublished - Jul 14 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 The Authors.

ASJC Scopus Subject Areas

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic'. Together they form a unique fingerprint.

Cite this