Enhanced Tunneling Magnetoresistance Effect via Ferroelectric Control of Interface Electronic/Magnetic Reconstructions

Xiao Chi, Rui Guo, Juxia Xiong, Lizhu Ren, Xinwen Peng*, Beng Kang Tay*, Jingsheng Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Magnetic tunnel junctions (MTJs) with tunable tunneling magnetoresistances (TMR) have already been proven to have great potential for spintronics. Especially, when ferroelectric materials are used as insulating barriers, more novel functions of MTJs can be realized due to interface magnetoelectric coupling. Here, we demonstrate a very large ferroelectric modulation of TMR (as high as 570% in low-resistance state) in the ferroelectric/magnetic La0.5Sr0.5MnO3/BaTiO3 (LSMO/BTO) junctions and find robust interfacial electronic and magnetic reconstructions via ferroelectric polarization switching. Through electrical, magnetic, and optical measurements combined with X-ray absorption and magnetic circular dichroism, we reveal that the interfacial electronic and magnetic (ferromagnetic/antiferromagnetic phase transition) reconstructions originate from strong electromagnetic coupling between BTO and LSMO at the interface and are driven by the modulation of hole/electron doping at the interface of LSMO/BTO through ferroelectric polarization switching. As a result, the ferroelectrically controlled interface barrier height and width and spin filter effect enable a giant electrical modulation of TMR. Our results shed new light on the intrinsic mechanisms governing magnetoelectric coupling and offering a new route to enhance magnetoelectric coupling for spin control in spintronic devices.

Original languageEnglish
Pages (from-to)56638-56644
Number of pages7
JournalACS Applied Materials and Interfaces
Volume13
Issue number47
DOIs
Publication statusPublished - Dec 1 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 American Chemical Society.

ASJC Scopus Subject Areas

  • General Materials Science

Keywords

  • interface electronic/magnetic reconstruction
  • magnetic tunnel junctions
  • magnetoresistance
  • X-ray absorption
  • X-ray magnetic circular dichroism

Fingerprint

Dive into the research topics of 'Enhanced Tunneling Magnetoresistance Effect via Ferroelectric Control of Interface Electronic/Magnetic Reconstructions'. Together they form a unique fingerprint.

Cite this