Abstract
It is very important to obtain a deeper understand of the carrier dynamics for indirect-bandgap multilayer MoS2 and to make further improvements to the luminescence efficiency. Herein, an anomalous luminescence behavior of multilayer MoS2 is reported, and its exciton emission is significantly enhanced at high temperatures. Temperature-dependent Raman studies and electronic structure calculations reveal that this experimental observation cannot be fully explained by a common mechanism of thermal-expansion-induced interlayer decoupling. Instead, a new model involving the intervalley transfer of thermally activated carriers from Λ/Γ point to K point is proposed to understand the high-temperature luminescence enhancement of multilayer MoS2. Steady-state and transient-state fluorescence measurements show that both the lifetime and intensity of the exciton emission increase relatively to increasing temperature. These two experimental evidences, as well as a calculation of carrier population, provide strong support for the proposed model.
Original language | English |
---|---|
Article number | 1700157 |
Journal | Small |
Volume | 13 |
Issue number | 17 |
DOIs | |
Publication status | Published - May 3 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Biotechnology
- Biomaterials
- General Chemistry
- General Materials Science
Keywords
- heat-induced interlayer decoupling
- intervalley transfer of carriers
- luminescence enhancement
- multilayer MoS