Abstract
The buckling behaviour and resistances of press-braked stainless steel channel section beam-columns under combined compression and minor-axis bending have been studied in the present paper through laboratory testing and numerical modelling. The testing programme adopted two press-braked stainless steel channel sections and included initial global and local geometric imperfection measurements and ten beam-column tests. Two types of failure mode, namely ‘C’-orientation buckling (indicating that failure specimens buckled towards the web) and ‘reverse C’-orientation buckling (signifying that failure specimens buckled towards the flange tips), were observed upon testing. The testing programme was followed by a numerical modelling programme; finite element models were developed and validated against the test results and then adopted to perform parametric studies to generate further numerical data on press-braked stainless steel channel section beam-columns over a wide range of cross-section dimensions, member effective lengths and loading combinations. The obtained experimental and numerical data were employed to assess the accuracy and consistency of the relevant codified design rules for press-braked stainless steel channel section beam-columns, as given in the European code, American specification and Australian/New Zealand standard. The results of assessment revealed that the European code yields many unsafe resistance predictions for Class 1 and 2 press-braked stainless steel channel section beam-columns but overly conservative resistance predictions for Class 3 press-braked stainless steel channel section beam-columns, although the resulting overall design accuracy is good, but with a high level of scatter of the resistance predictions. Compared with the European code, the American specification and Australian/New Zealand standard result in slightly more accurate resistance predictions for press-braked stainless steel channel section beam-columns with buckling in the ‘C’ orientation, but lead to significantly more conservative predicted resistances for press-braked stainless steel channel section beam-columns with buckling in the ‘reverse C’ orientation. In terms of the design consistency, the American specification and Australian/New Zealand standard were shown to result in more consistent resistance predictions (regardless of cross-section dimensions and buckling orientations) than their Eurocode counterpart.
Original language | English |
---|---|
Article number | 107344 |
Journal | Thin-Walled Structures |
Volume | 161 |
DOIs | |
Publication status | Published - Apr 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Ltd
ASJC Scopus Subject Areas
- Civil and Structural Engineering
- Building and Construction
- Mechanical Engineering
Keywords
- Beam-column tests
- Combined loading
- Design codes
- Initial geometric imperfection measurements
- Interaction formulae
- Numerical modelling
- Press-braked channel sections
- Stainless steel