Explore In-Context Segmentation via Latent Diffusion Models

Chaoyang Wang, Xiangtai Li, Henghui Ding, Lu Qi, Jiangning Zhang, Yunhai Tong, Chen Change Loy, Shuicheng Yan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In-context segmentation has drawn increasing attention with the advent of vision foundation models. Its goal is to segment objects using given reference images. Most existing approaches adopt metric learning or masked image modeling to build the correlation between visual prompts and input image queries. This work approaches the problem from a fresh perspective – unlocking the capability of the latent diffusion model (LDM) for in-context segmentation and investigating different design choices. Specifically, we examine the problem from three angles: instruction extraction, output alignment, and meta-architectures. We design a two-stage masking strategy to prevent interfering information from leaking into the instructions. In addition, we propose an augmented pseudo-masking target to ensure the model predicts without forgetting the original images. Moreover, we build a new and fair in-context segmentation benchmark that covers both image and video datasets. Experiments validate the effectiveness of our approach, demonstrating comparable or even stronger results than previous specialist or visual foundation models. We hope our work inspires others to rethink the unification of segmentation and generation.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages7545-7553
Number of pages9
Edition7
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
Publication statusPublished - Apr 11 2025
Externally publishedYes
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: Feb 25 2025Mar 4 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number7
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period2/25/253/4/25

Bibliographical note

Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

ASJC Scopus Subject Areas

  • Artificial Intelligence

Cite this