Exploring CLIP for Assessing the Look and Feel of Images

Jianyi Wang, Kelvin C.K. Chan, Chen Change Loy*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

343 Citations (Scopus)

Abstract

Measuring the perception of visual content is a long-standing problem in computer vision. Many mathematical models have been developed to evaluate the look or quality of an image. Despite the effectiveness of such tools in quantifying degradations such as noise and blurriness levels, such quantification is loosely coupled with human language. When it comes to more abstract perception about the feel of visual content, existing methods can only rely on supervised models that are explicitly trained with labeled data collected via laborious user study. In this paper, we go beyond the conventional paradigms by exploring the rich visual language prior encapsulated in Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images without explicit task-specific training. In particular, we discuss effective prompt designs and show an antonym prompt pairing strategy to harness the prior. We also provide extensive experiments on controlled datasets and Image Quality Assessment (IQA) benchmarks. Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 2
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages2555-2563
Number of pages9
ISBN (Electronic)9781577358800
DOIs
Publication statusPublished - Jun 27 2023
Externally publishedYes
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: Feb 7 2023Feb 14 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period2/7/232/14/23

Bibliographical note

Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org).

ASJC Scopus Subject Areas

  • Artificial Intelligence

Cite this