Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported Membrane Microarray

Kabir H. Biswas*, Nam Joon Cho, Jay T. Groves

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Deoxyribonucleic acid (DNA) has been used as a material for a variety of applications, including surface functionalization for cell biological or in vitro reconstitution studies. Use of DNA-based surface functionalization eliminates limitations of multiplexing posed by traditionally used methods in applications requiring spatially segregated surface functionalization. Recently, we have reported a stochastic, membrane fusion-based strategy to fabricate multicomponent membrane array substrates displaying spatially segregated protein ligands using biotin-streptavidin and Ni-NTA-polyhistidine interactions. Here, we report the delivery of DNA oligonucleotide-conjugated lipid molecules to membrane corrals, allowing spatially segregated membrane corral functionalization in a membrane microarray. Incubation of microbeads coated with the supported membrane resulted in an exchange of lipid contents with planar membrane corrals present on a micropatterned substrate. Increases in the system temperature and membrane corral size resulted in alterations in the rate constant of lipid exchange, which are in agreement with our previously developed analytical model and further confirm that lipid exchange is a diffusion-based process that takes place after the formation of a long "fusion-stalk" between the two membranes. We take advantage of the physical dimensions of the fusion-stalk with a large aspect ratio to deliver DNA oligonucleotide-conjugated lipid molecules to membrane corrals. We believe that the ability to functionalize membrane corrals with DNA oligonucleotides significantly increases the utility of the stochastic fusion-mediated lipid delivery strategy in the functionalization of biomolecules such as DNA or DNA-conjugated protein ligands.

Original languageEnglish
Pages (from-to)9781-9788
Number of pages8
JournalLangmuir
Volume34
Issue number33
DOIs
Publication statusPublished - Aug 21 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2018 American Chemical Society.

ASJC Scopus Subject Areas

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported Membrane Microarray'. Together they form a unique fingerprint.

Cite this