FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation

Yuhang Zang, Chen Huang, Chen Change Loy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

108 Citations (Scopus)

Abstract

Recent methods for long-tailed instance segmentation still struggle on rare object classes with few training data. We propose a simple yet effective method, Feature Augmentation and Sampling Adaptation (FASA), that addresses the data scarcity issue by augmenting the feature space especially for rare classes. Both the Feature Augmentation (FA) and feature sampling components are adaptive to the actual training status - FA is informed by the feature mean and variance of observed real samples from past iterations, and we sample the generated virtual features in a loss-adapted manner to avoid over-fitting. FASA does not require any elaborate loss design, and removes the need for inter-class transfer learning that often involves large cost and manually-defined head/tail class groups. We show FASA is a fast, generic method that can be easily plugged into standard or long-tailed segmentation frameworks, with consistent performance gains and little added cost. FASA is also applicable to other tasks like long-tailed classification with state-of-the-art performance.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3437-3446
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Cite this