Fatal void size comparisons in via-below and via-above Cu dual-damascene interconnects

Z. S. Choi*, C. L. Gan, F. Wei, C. V. Thompson, J. H. Lee, K. L. Pey, W. K. Choi

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

9 Citations (Scopus)

Abstract

The median-times-to-failure (t50's) for straight dual-damascene via-terminated copper interconnect structures, tested under the same conditions, depend on whether the vias connect down to underlaying leads (metal 2, M2, or via-below structures) or connect up to overlaying leads (metal 1, M1, or via-above structures). Experimental results for a variety of line lengths, widths, and numbers of vias show higher t50's for M2 structures than for analogous M1 structures. It has been shown that despite this asymmetry in lifetimes, the electromigration drift velocity is the same for these two types of structures, suggesting that fatal void volumes are different in these two cases. A numerical simulation tool based on the Korhonen model has been developed and used to simulate the conditions for void growth and correlate fatal void sizes with lifetimes. These simulations suggest that the average fatal void size for M2 structures is more than twice the size of that of M1 structures. This result supports an earlier suggestion that preferential nucleation at the Cu/Si3N4 interface in both Ml and M2 structures leads to different fatal void sizes, because larger voids are required to span the line thickness in M2 structures while smaller voids below the base of vias can cause failures in M1 structures. However, it is also found that the fatal void sizes corresponding to the shortest-times-to-failure (STTF's) are similar for M1 and M2, suggesting that the voids that lead to the shortest lifetimes occur at or in the vias in both cases, where a void need only span the via to cause failure. Correlation of lifetimes and critical void volumes provides a useful tool for distinguishing failure mechanisms.

Original languageEnglish
Pages (from-to)373-378
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume812
DOIs
Publication statusPublished - 2004
Externally publishedYes
EventMaterials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics - 2004 - San Francisco, CA, United States
Duration: Apr 13 2004Apr 15 2004

ASJC Scopus Subject Areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Fatal void size comparisons in via-below and via-above Cu dual-damascene interconnects'. Together they form a unique fingerprint.

Cite this