Abstract
Emulation of biological synapses is necessary for future brain-inspired neuromorphic computational systems that could look beyond the standard von Neuman architecture. Here, artificial synapses based on ionic-electronic hybrid oxide-based transistors on rigid and flexible substrates are demonstrated. The flexible transistors reported here depict a high field-effect mobility of ≈9 cm2 V−1 s−1 with good mechanical performance. Comprehensive learning abilities/synaptic rules like paired-pulse facilitation, excitatory and inhibitory postsynaptic currents, spike-time-dependent plasticity, consolidation, superlinear amplification, and dynamic logic are successfully established depicting concurrent processing and memory functionalities with spatiotemporal correlation. The results present a fully solution processable approach to fabricate artificial synapses for next-generation transparent neural circuits.
Original language | English |
---|---|
Article number | 1701193 |
Journal | Small |
Volume | 13 |
Issue number | 32 |
DOIs | |
Publication status | Published - Aug 25 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Biotechnology
- General Chemistry
- Biomaterials
- General Materials Science
- Engineering (miscellaneous)
Keywords
- excitatory postsynaptic current (EPSC)
- inhibitory postsynaptic currents (IPSC)
- neuromorphic
- paired pulse facilitation (PPF)
- spike-duration-dependent plasticity (SDDP)