Abstract
We derive a solution to the problem of a plane electromagnetic wave focused by a parabolic mirror. The solution is obtained from the Stratton-Chu integral by solving a boundary-value problem. Our solution can be considered self-consistent. We also derive the far-field, i.e., Debye, approximation of our formulas. The solution shows that when the paraboloid is infinite, its focusing properties exhibit a dispersive behavior; that is, the structure of the field distribution in the vicinity of the focus strongly depends on the wavelength of the illumination. We show that for an infinite paraboloid the confinement of the focused energy worsens, with the energy distribution spreading in the focal plane.
Original language | English |
---|---|
Pages (from-to) | 2081-2089 |
Number of pages | 9 |
Journal | Journal of the Optical Society of America A: Optics and Image Science, and Vision |
Volume | 17 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2000 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Computer Vision and Pattern Recognition