Abstract
Solid-state, solution processed solar-cells based on organic-inorganic methyl ammonium lead halide absorbers have achieved efficiencies in excess of 15%, which has superseded liquid dye sensitized cells, as well as various thin film-based photovoltaics. This report introduces a new metal-halide perovskite, based on the formamidinium cation (HC(NH2)2+), that displays a favorable band gap (1.47 eV) and represents a broader absorption compared to previously reported absorbers that contained the methylammonium cation (CH3NH3+). The high open-circuit voltage (Voc = 0.97 V) and promising fill-factor (FF = 68.7%) yield an efficiency of 4.3%, which make this material an excellent candidate for this new class of perovskite solar cell. This report also investigates the formation of a black trigonal (P3m1) perovskite polymorph and a yellow hexagonal nonperovskite (P63mc) polymorph. Further solar cell development would entail the stabilization of the black trigonal (P3m1) perovskite polymorph over the yellow hexagonal nonperovskite (P63mc) polymorph.
Original language | English |
---|---|
Pages (from-to) | 16458-16462 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry C |
Volume | 118 |
Issue number | 30 |
DOIs | |
Publication status | Published - Jul 31 2014 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films