Abstract
Sensors and algorithms are two fundamental elements to construct intelligent systems. The recent progress in machine learning (ML) has produced great advancements in intelligent systems, owing to the powerful data analysis capability of ML algorithms. However, the performance of most systems is still hindered by sensing techniques that typically rely on rigid and bulky sensor devices, which cannot conform to irregularly curved and dynamic surfaces for high-quality data acquisition. Skin-like stretchable sensing technology with unique characteristics, such as high conformability, low modulus, and light weight, has been recently developed to solve this issue. Here, the recent progress in the fusion of emerging stretchable electronics and ML technology, for bioelectrical signal recognition, tactile perception, and multimodal integration is summarized, and the challenges and future developments are further discussed. These efforts aim to accelerate various perception and reasoning tasks for advanced intelligent applications, such as human–machine interfaces, healthcare, and robotics.
Original language | English |
---|---|
Article number | 2008807 |
Journal | Advanced Functional Materials |
Volume | 31 |
Issue number | 39 |
DOIs | |
Publication status | Published - Sept 23 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021 Wiley-VCH GmbH
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Biomaterials
- General Materials Science
- Condensed Matter Physics
- Electrochemistry
Keywords
- artificial intelligence
- electronic skin
- human–machine interfaces
- machine learning
- stretchable sensors