Abstract
The mechanical properties of carbon fiber (CF) reinforced composites are greatly dependent on the interfacial strength between the CFs and matrix. To improve the interfacial adhesion of carbon fiber/epoxy composites, branched polyethylenimine (PEI) is grafted onto the CFs treated in a mixed acid at optimized process time. The chemical compositions and bonds of functionalized CFs are characterized by thermal gravimetric analysis, Fourier-transform infrared, and X-ray photoelectron spectroscopy. The surface structures and morphologies of various CFs are analyzed by Raman spectroscopy and scanning electron microscopy, respectively. Microbond test is adopted to evaluate the interfacial shear strength (IFSS) between the CFs and epoxy matrix. The results show that the CFs modified by low molecular weight PEI are better than those modified by high molecular weight PEI. The IFSS of PEI modified CFs can reach a maximum of 107.2 ± 14.3 MPa at a low functionalization degree compared with 78.1 ± 11.6 MPa of unmodified CFs. The branched structure and high density of active amine groups on the PEI chains are responsible for the improved interfacial strength.
Original language | English |
---|---|
Article number | 1500122 |
Journal | Advanced Materials Interfaces |
Volume | 2 |
Issue number | 12 |
DOIs | |
Publication status | Published - Aug 1 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ASJC Scopus Subject Areas
- Mechanics of Materials
- Mechanical Engineering
Keywords
- carbon fibers
- interfacial shear strength
- polyethylenimine
- polymers