Graphene for supercapacitor applications

Yu Bin Tan, Jong Min Lee*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

485 Citations (Scopus)

Abstract

Graphene has attracted extensive interest in the field of supercapacitor research due to its 2D structure which grants it exceptional properties such as superior electrical conductivity and mechanical properties as well as an extensive surface area better than that of carbon nanotubes (CNTs). Furthermore, unlike other carbon materials, graphene is particularly optimal for supercapacitor applications as its surface area does not vary with pore size distribution and grants electrolyte access to both its surfaces. This article aims to review the advances in recent research and development of the use of graphene for supercapacitor use. The focus would mainly be on the areas of graphene synthesis, graphene modification, graphene-nanoporous carbon composites, graphene-polymer composites and graphene-metal oxides and their potential use in both asymmetric and symmetric supercapacitors. Lastly, the article aims to identify optimal testing methods for electrode performance and choice of electrolytes. It will then stress the increasing need to standardise electrode testing to ensure that test results are as relevant to real life applications as possible.

Original languageEnglish
Pages (from-to)14814-14843
Number of pages30
JournalJournal of Materials Chemistry A
Volume1
Issue number47
DOIs
Publication statusPublished - Dec 21 2013
Externally publishedYes

ASJC Scopus Subject Areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'Graphene for supercapacitor applications'. Together they form a unique fingerprint.

Cite this