Abstract
Sorting and detection of circulating tumor cells (CTC) in peripheral blood as an efficient and non-invasive method to diagnose cancer have recently attracted much attention. In this article, we developed a multiply-engineered nanoparticle system for CTC sorting and detection, which consists of (1) conjugated oligomer (CO) as fluorescence signal source, (2) polyhedral oligomeric silsesquioxanes (POSS) scaffold for CO localization for better fluorescent effects, (3) silica nanoparticles (SiNPs) as formulation matrix of the POSS containing CO, (4) iron oxide (IO) layer on the silica nanoparticles (IO-SiNPs) for magnetic collection, and (5) herceptin surface functionalization of the IO-SiNPs to target cancer cells of HER2 overexpression. Such a multiply-engineered structure can be used for either traditional immunomagnetic methods or microfluidic devices for CTC sorting and detection.
Original language | English |
---|---|
Pages (from-to) | 8226-8233 |
Number of pages | 8 |
Journal | Biomaterials |
Volume | 32 |
Issue number | 32 |
DOIs | |
Publication status | Published - Nov 2011 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Biophysics
- Bioengineering
- Ceramics and Composites
- Biomaterials
- Mechanics of Materials
Keywords
- Cancer nanotechnology
- Conjugated oligomers
- CTC
- Iron oxides
- Silica nanoparticles
- Trastuzumab