Abstract
(Nd1-xDyx)2(Fe,Co)14B magnetic nanoparticles, in a range of Dy content from 0 to 0.6, were synthesized by a mechanochemical process. The influence of Dy substitution on the crystal structure and magnetic properties were studied. With increasing Dy content, the coercivity of (Nd1-xDyx)2(Fe,Co)14B particles first doubled from 8.8 kOe (x = 0) to a high value of 17.8 kOe (x = 0.5), further increase of Dy content led to a slightly lower coercivity of 17.5 kOe (x = 0.6). (Nd0.8Dy0.2)2(Fe,Co)14B particles exhibited good thermal stability, with a thermal coefficient of remanence (α) of -0.053% and thermal coefficient of coercivity (β) of -0.348%. Reduced spin-reorientation temperatures (TSR) of 105 K – 115 K were observed for (Nd1-xDyx)2(Fe,Co)14B, for x in the range of 0 to 0.2, making these compositions more attractive for cryogenic applications. Detailed analysis of the temperature dependent magnetic properties revealed that coercivity was controlled by nucleation of reversed magnetic domains.
Original language | English |
---|---|
Pages (from-to) | 554-562 |
Number of pages | 9 |
Journal | Journal of Magnetism and Magnetic Materials |
Volume | 475 |
DOIs | |
Publication status | Published - Apr 1 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Elsevier B.V.
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics