Abstract
In this manuscript we reveal the formation of bilayered hybrid perovskites of a new lower dimensional perovskite family, (CHMA)2(MA)n-1PbnI3 with n = 1-5, with high ambient stability via its crystallization driven self-assembly process. The spun-coated perovskite solution tends to crystallize and undergo phase separation during annealing, resulting in the formation of 2D/3D bilayered hybrid perovskites. Remarkably, this 2D/3D hybrid perovskites possess striking moisture resistance and displays high ambient stability up to 65 days. The bilayered approach in combining 3D and 2D perovskites could lead to a new era of perovskite research for high-efficiency photovoltaics with outstanding stability, with the 3D perovskite providing excellent electronic properties while the 2D perovskite endows it moisture stability.
Original language | English |
---|---|
Pages (from-to) | 28743-28749 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 34 |
DOIs | |
Publication status | Published - Aug 30 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
Keywords
- air stability
- bilayered perovskite
- mixed-dimensionality
- phase separation
- self-assembly