Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria

Jiaojie He, Wei Wang*, Fenglian Sun, Wenxin Shi, Dianpeng Qi, Ke Wang, Ruisha Shi, Fuyi Cui, Ce Wang, Xiaodong Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

205 Citations (Scopus)

Abstract

La(OH)3 nanorods immobilized in polyacrylonitrile (PAN) nanofibers (PLNFs) were fabricated for the first time by electrospinning and a subsequent in situ surfactant-free precipitation method and then applied as a highly efficient phosphate scavenger to realize nutrient-starvation antibacteria for drinking water security. The immobilization by PAN nanofibers effectively facilitated the in situ formation of the aeolotropic and well-dispersed La(OH)3 nanostructures and, thus, rendered higher phosphate removal efficiency due to more exposed active sites for binding phosphate. The maximum phosphate capture capacity of La(OH)3 nanorods in PAN nanofibers was around 8 times that of the La(OH)3 nanocrystal fabricated by precipitation without PAN protection. Moreover, remarkably fast adsorption kinetics and high removal rate were observed toward low concentration phosphate due to the high activity of our materials, which can result in a stringent phosphate-deficient condition to kill microorganisms in water effectively. The present material is also capable of preventing sanitized water from recontamination by bacteria and keeping water biologically stable for drinking. Impressively, stabilized by PAN nanofibers, the La(OH)3 nanorods can be easily separated out after reactions and avoid leaking into water. The present development has great potential as a promising antimicrobial solution for practical drinking water security and treatment with a negligible environmental footprint.

Original languageEnglish
Pages (from-to)9292-9302
Number of pages11
JournalACS Nano
Volume9
Issue number9
DOIs
Publication statusPublished - Sept 22 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

ASJC Scopus Subject Areas

  • General Materials Science
  • General Engineering
  • General Physics and Astronomy

Keywords

  • antibacteria
  • drinking water security
  • electrospinning
  • La(OH)
  • phosphate removal

Fingerprint

Dive into the research topics of 'Highly Efficient Phosphate Scavenger Based on Well-Dispersed La(OH)3 Nanorods in Polyacrylonitrile Nanofibers for Nutrient-Starvation Antibacteria'. Together they form a unique fingerprint.

Cite this