Abstract
Electron-photon coupling in metal nanostructures has raised a new trend for active plasmonic switch devices in both fundamental understanding and technological applications. However, low sensitivity switches with an on/off ratio less than 5 have restricted applications. In this work, an electrically modulated plasmonic switch based on a surface-enhanced Raman spectroscopy (SERS) system with a single fivefold stellate polyhedral gold nanoparticle (FSPAuNP) is reported. The reversible switch of the SERS signal shows high sensitivity with an on/off ratio larger than 30. Such a high on/off ratio arises primarily from the plasmonic resonance shift of the FSPAuNP with the incident laser due to the altered free electron density on the nanoparticle under an applied electrochemical potential. This highly sensitive electro-plasmonic switch may enable further development of plasmonic devices.
Original language | English |
---|---|
Pages (from-to) | 5395-5401 |
Number of pages | 7 |
Journal | Small |
Volume | 11 |
Issue number | 40 |
DOIs | |
Publication status | Published - Oct 1 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ASJC Scopus Subject Areas
- Biotechnology
- Biomaterials
- General Chemistry
- General Materials Science
Keywords
- Au nanoparticles
- electro-plasmonic switches
- fivefold stellate polyhedrons
- single nanoparticle electrodes