Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films

David Giovanni, Hong Ma, Julianto Chua, Michael Grätzel, Ramamoorthy Ramesh, Subodh Mhaisalkar, Nripan Mathews*, Tze Chien Sum

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

229 Citations (Scopus)

Abstract

Low-temperature solution-processed organic-inorganic halide perovskite CH3NH3PbI3 has demonstrated great potential for photovoltaics and light-emitting devices. Recent discoveries of long ambipolar carrier diffusion lengths and the prediction of the Rashba effect in CH3NH3PbI3, that possesses large spin-orbit coupling, also point to a novel semiconductor system with highly promising properties for spin-based applications. Through circular pump-probe measurements, we demonstrate that highly polarized electrons of total angular momentum (J) with an initial degree of polarization Pini ∼ 90% (i.e., -30% degree of electron spin polarization) can be photogenerated in perovskites. Time-resolved Faraday rotation measurements reveal photoinduced Faraday rotation as large as 10°/m at 200 K (at wavelength γ = 750 nm) from an ultrathin 70 nm film. These spin polarized carrier populations generated within the polycrystalline perovskite films, relax via intraband carrier spin-flip through the Elliot-Yafet mechanism. Through a simple two-level model, we elucidate the electron spin relaxation lifetime to be ∼7 ps and that of the hole is ∼1 ps. Our work highlights the potential of CH3NH3PbI3 as a new candidate for ultrafast spin switches in spintronics applications.

Original languageEnglish
Pages (from-to)1553-1558
Number of pages6
JournalNano Letters
Volume15
Issue number3
DOIs
Publication statusPublished - Mar 11 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

ASJC Scopus Subject Areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Keywords

  • circular pump-probe
  • Faraday rotation
  • spin dynamics
  • spin polarization
  • Spintronics

Fingerprint

Dive into the research topics of 'Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films'. Together they form a unique fingerprint.

Cite this