Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback

Ankit, Naveen Tiwari, Mayank Rajput, Nguyen Anh Chien, Nripan Mathews*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

Human–machine haptic interaction is typically detected by variations in friction, roughness, hardness, and temperature, which combines to create sensation of surface texture change. Most of the current technologies work to simulate changes in tactile perception (via electrostatic, lateral force fields, vibration motors, etc.) without creating actual topographical transformations. This makes it challenging to provide localized feedback. Here, a new concept for on-demand surface texture augmentation that is capable of physically forming local topographic features in any predesigned pattern is demonstrated. The transparent, flexible, integrable device comprises of a hybrid electrode system with conductive hydrogel, silver nanowires, and conductive polymers with acrylic elastomer as the dielectric layer. Desired surface textures can be controlled by a predesigned pattern of electrodes, which operates as independent or interconnected actuators. Surface features with up to a height of 0.155 mm can be achieved with a transformation time of less than a second for a device area of 18 cm2. High transparency levels of 76% are achieved due to the judicious choice of the electrode and the active elastomer layer. The capability of localized and controlled deformations makes this system highly useful for applications such as display touchscreens, touchpads, braille displays, on-demand buttons, and microfluidic devices.

Original languageEnglish
Article number1702312
JournalSmall
Volume14
Issue number1
DOIs
Publication statusPublished - Jan 4 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ASJC Scopus Subject Areas

  • Biotechnology
  • Biomaterials
  • General Chemistry
  • General Materials Science

Keywords

  • dielectric elastomers
  • electroactive polymers
  • soft actuators
  • tactile feedback
  • transparent electrodes

Fingerprint

Dive into the research topics of 'Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback'. Together they form a unique fingerprint.

Cite this