Hydrolytic Stability of Methacrylamide and Methacrylate in Gelatin Methacryloyl and Decoupling of Gelatin Methacrylamide from Gelatin Methacryloyl through Hydrolysis

Jing Zheng, Mengxiang Zhu, Gaia Ferracci, Nam Joon Cho*, Bae Hoon Lee

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Gelatin methacryloyl (GelMA; GM) is a promising nature-derived photocurable material that can mimic the extracellular matrix because GelMA features tailorable mechanical properties, proteolytic degradation, and good cell adhesion. GelMA contains not only methacrylamide but also methacrylate. However, the hydrolytic stability of methacrylamide and methacrylate groups of GelMA in aqueous solutions has not been scrutinized. Here, the structural change of GelMA through hydrolysis is investigated for the first time. The structural change of hydrolyzed GelMA is quantitatively identified using colorimetric and 1H NMR methods. The methacrylate groups decompose markedly at high pH solutions, but the methacrylamide groups remain stable. Further, pure gelatin methacrylamide is successfully decoupled from GelMA for a better understanding of GelMA structure and future use for biomedical applications.

Original languageEnglish
Article number1800266
JournalMacromolecular Chemistry and Physics
Volume219
Issue number18
DOIs
Publication statusPublished - Sept 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ASJC Scopus Subject Areas

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Organic Chemistry
  • Materials Chemistry

Keywords

  • gelatin methacrylamide
  • gelatin methacrylate
  • gelatin methacryloyl
  • hydrolysis
  • structural stability

Fingerprint

Dive into the research topics of 'Hydrolytic Stability of Methacrylamide and Methacrylate in Gelatin Methacryloyl and Decoupling of Gelatin Methacrylamide from Gelatin Methacryloyl through Hydrolysis'. Together they form a unique fingerprint.

Cite this