Abstract
High-temperature-induced fire is an extremely serious safety risk in energy storage devices; which can be avoided by replacing their components with nonflammable materials. However; these devices are still destroyed by the high-temperature decomposition; lacking reliability. Here, a fire-tolerant supercapacitor is further demonstrated that recovers after burning with a self-healable “solute-in-air” electrolyte. Using fire-tolerant electrodes and separator with a semiopen device configuration; hygroscopic CaCl2 in the air (“CaCl2-in-air”) is designed as a self-healable electrolyte; which loses its water solvent at high temperatures but spontaneously absorbs water from the air to recover by itself at low temperatures. The supercapacitor is disenabled at 500 °C; while it recovers after cooling in the air. Especially; it even recovers after burning at around 647 °C with enhanced performance. The study offers a self-healing strategy to design high-safety; high-reliability; and fire-tolerant supercapacitors; which inspires a promising way to deal with general fire-related risks.
Original language | English |
---|---|
Article number | 2109857 |
Journal | Advanced Materials |
Volume | 34 |
Issue number | 14 |
DOIs | |
Publication status | Published - Apr 7 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- energy storage
- fire tolerance
- hygroscopic materials
- self-healing
- supercapacitors