Improved thermoelectric efficiency of Sb2Si2Te6 through yttrium-induced nanocompositing

Kivanc Saglik, Xian Yi Tan, Jinfeng Dong, Ady Suwardi, Xizu Wang, Jianwei Xu, Qiang Zhu, Hongfei Liu, Jing Cao*, Qingyu Yan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Sb2Si2Te6 is a promising 2D material for medium-temperature thermoelectric applications, with the thermoelectric figure of merit zT approaching 1 at 823 K. However, its widespread use has been limited by relatively low power factor values. In this study, we successfully enhanced the performance of Sb2Si2Te6 by introducing Yttrium nanocomposites. This modification fine-tuned the carrier concentration and electrical conductivity, and increased the power factor up to 946 μW K−1 at 570 K. Jonker plot analysis revealed that increased carrier concentration did not affect the intrinsic electronic properties. SEM and TEM analyses revealed that Y nano-compositing introduced secondary phases, reducing the lattice thermal conductivity to values close to simulated ones using the Debye-Callaway model. Sb1.98Y0.02Si2Te6 exhibited the highest zT of 1.49 at 773 K due to the ultralow lattice thermal conductivity of 0.29 W m−1 K−1 and a moderate power factor of 858 μW K−1 at the same temperature. The single parabolic band (SPB) model suggests that with further optimization of the Fermi level and additional reduction in lattice thermal conductivity, the zT value could potentially increase to 1.55. These results demonstrate the potential of Y nanocompositing for enhancing Sb2Si2Te6 as an efficient medium-temperature thermoelectric material.

Original languageEnglish
JournalPhysical Chemistry Chemical Physics
DOIs
Publication statusAccepted/In press - 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2025 The Royal Society of Chemistry.

ASJC Scopus Subject Areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Improved thermoelectric efficiency of Sb2Si2Te6 through yttrium-induced nanocompositing'. Together they form a unique fingerprint.

Cite this