Abstract
FeP as a noble-metal-free catalyst has been successfully decorated onto the ZnxCd1−xS photocatalyst surface through an in situ phosphating process. In particular, the 2 % FeP/Zn0.5Cd0.5S−P sample showed the best hydrogen generation activity of 24.45 mmol h−1 g−1 which is over 130 times higher than that of pure Zn0.5Cd0.5S and nearly 1.3 times higher than that of the 1 % Pt-loaded Zn0.5Cd0.5S−P sample. The apparent quantum yield (AQY) of the 2 % FeP/Zn0.5Cd0.5S−P was estimated to be over 10 % at wavelengths up to 470 nm. The fluorescence spectra and electrochemical measurement results suggest that the decorated FeP not only reduces the overpotential for H2 evolution but also promotes the separation of the photogenerated charge carriers through formation of a heterojunction with Zn0.5Cd0.5S, which eventually leads to the superior activity of the FeP/Zn0.5Cd0.5S−P photocatalyst for visible-light-driven hydrogen generation.
Original language | English |
---|---|
Pages (from-to) | 825-830 |
Number of pages | 6 |
Journal | ChemPlusChem |
Volume | 83 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- General Chemistry
Keywords
- heterojunctions
- hydrogen generation
- metal phosphides
- photocatalysis
- water splitting