Abstract
Exploring highly active and low-cost non-precious electrocatalysts for the oxygen evolution reaction (OER) is a pressing challenge for the development of sustainable hydrogen energy technologies. Herein, we develop a facile hydrothermal-assisted corrosion treatment approach to transform readily available low-cost 316L-type commercial stainless steel (316L-SS) into a cost-effective self-supporting electrocatalyst for the OER. The prepared electrode could achieve an outstanding catalytic activity and stability with an overpotential of 282 mV at a current density of 10 mA cm−2 for the OER. The experimental and theoretical results show that a facile surface modification carried out with 316L-SS, based on a corrosion mechanism, to corrosion-induced formation of nickel-iron hydroxides and their transformation into nickel-iron (oxy)(hydro)oxides would account for this superior performance. This work not only provides great promise for a cost-effective, mass-production method to produce cheap, stable, and efficient electrocatalysts for the OER, but also perhaps more importantly bridges traditional metal corrosion engineering and modern electrochemical energy technologies, which would offer new ideas for further electrocatalytic materials design and development.
Original language | English |
---|---|
Pages (from-to) | 19008-19017 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 12 |
Issue number | 30 |
DOIs | |
Publication status | Published - Jun 19 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 The Royal Society of Chemistry.
ASJC Scopus Subject Areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science