In situ growth of an active catalytic layer on commercial stainless steel via a hydrothermal-assisted corrosion process for efficient oxygen evolution reaction

Jiuyang Xia, Jianghong Zhang, Kang Huang, Bowei Zhang*, Fei Wu, Yu Liang, Shuai Lu, Yizhong Huang*, Junsheng Wu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Exploring highly active and low-cost non-precious electrocatalysts for the oxygen evolution reaction (OER) is a pressing challenge for the development of sustainable hydrogen energy technologies. Herein, we develop a facile hydrothermal-assisted corrosion treatment approach to transform readily available low-cost 316L-type commercial stainless steel (316L-SS) into a cost-effective self-supporting electrocatalyst for the OER. The prepared electrode could achieve an outstanding catalytic activity and stability with an overpotential of 282 mV at a current density of 10 mA cm−2 for the OER. The experimental and theoretical results show that a facile surface modification carried out with 316L-SS, based on a corrosion mechanism, to corrosion-induced formation of nickel-iron hydroxides and their transformation into nickel-iron (oxy)(hydro)oxides would account for this superior performance. This work not only provides great promise for a cost-effective, mass-production method to produce cheap, stable, and efficient electrocatalysts for the OER, but also perhaps more importantly bridges traditional metal corrosion engineering and modern electrochemical energy technologies, which would offer new ideas for further electrocatalytic materials design and development.

Original languageEnglish
Pages (from-to)19008-19017
Number of pages10
JournalJournal of Materials Chemistry A
Volume12
Issue number30
DOIs
Publication statusPublished - Jun 19 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024 The Royal Society of Chemistry.

ASJC Scopus Subject Areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Fingerprint

Dive into the research topics of 'In situ growth of an active catalytic layer on commercial stainless steel via a hydrothermal-assisted corrosion process for efficient oxygen evolution reaction'. Together they form a unique fingerprint.

Cite this