Abstract
Well dispersed CdS quantum dots were successfully grown in-situ on g-C 3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS-C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h-1 g-1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N 4 and CdS, which leads to effective charge separation on both parts.
Original language | English |
---|---|
Pages (from-to) | 1258-1266 |
Number of pages | 9 |
Journal | International Journal of Hydrogen Energy |
Volume | 38 |
Issue number | 3 |
DOIs | |
Publication status | Published - Feb 6 2013 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology
Keywords
- Carbon nitride
- Charge transfer
- Hydrogen production
- Photocatalyst
- Solar fuels
- Water splitting