In-vivo optophysiology in rodent eyes using phase-sensitive optical coherence tomography

Bingyao Tan*, Huakun Li, Veluchamy Amutha Barathi, Leopold Schmetterer, Tong Ling

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recently, there has been vast interest in probing photoreceptor dynamics using optical coherence tomography (OCT). Most successful demonstrations implemented adaptive optics or digital adaptive optics to resolve individual cones or rods in human subjects. Here we use phase information to trace the photoreceptor response in rodents using an ultrahigh-resolution, phase-sensitive, spectral-domain OCT. Brown Norway rats (6-14 weeks) were sedated using a ketamine and xylazine cocktail. Repeated scans were registered by a phase-restoring subpixel motion correction algorithm to isolate the bulk motion, and two hyperreflective bands (inner segment/outer segment junction – IS/OS; outer segment tip + retinal pigment epithelium + Bruch's membrane) were segmented automatically. As a result, two types of nanoscale signals (biphasic Type-I and monophasic Type-II) were detected with a clear separation in depth. We tested the repeatability, scotopic stimulus strength dependency, and photopic background intensity dependency. Besides, we demonstrated enface mapping of the ORG signals in a wide field of 20°, analogous to the multifocal electroretinogram but with a much higher resolution, revealing the spatial distribution of the outer retina function. This method could be extended to study animal models with photoreceptor degeneration and clinical studies to investigate early photoreceptor dysfunction with high spatiotemporal resolution.

Original languageEnglish
Title of host publicationOptical Coherence Imaging Techniques and Imaging in Scattering Media V
EditorsBenjamin J. Vakoc, Maciej Wojtkowski, Yoshiaki Yasuno
PublisherSPIE
ISBN (Electronic)9781510664739
DOIs
Publication statusPublished - 2023
Externally publishedYes
EventOptical Coherence Imaging Techniques and Imaging in Scattering Media V 2023 - Munich, Germany
Duration: Jun 25 2023Jun 29 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12632
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceOptical Coherence Imaging Techniques and Imaging in Scattering Media V 2023
Country/TerritoryGermany
CityMunich
Period6/25/236/29/23

Bibliographical note

Publisher Copyright:
© 2023 SPIE. All rights reserved.

ASJC Scopus Subject Areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'In-vivo optophysiology in rodent eyes using phase-sensitive optical coherence tomography'. Together they form a unique fingerprint.

Cite this