Abstract
A quorum quenching (QQ) consortium comprised of both acyl homoserine lactones (AHLs)- and autoinducer-2 (AI-2)-degrading bacteria, either immobilized in polymer-coated alginate beads or in liquid suspension, was examined for fouling control in lab-scale MBRs under both steady and changing organic loading rates (OLRs). Under steady conditions the QQ consortium retarded biofouling by a factor of 3. However, a continuous increase in OLR vastly reduced the effectiveness of QQ bacteria; the biofouling was retarded only by factors of 1.4–1.8. A significant increase in extracellular polymeric substance (EPS), especially loosely-bound EPS in mixed liquor together with an increase in polysaccharide content up to 4 times in EPS resulted from the increase in OLR, was attributed to the impaired QQ efficacy. In control MBRs, cake layer resistance was the major factor (>60%) contributing to the increased trans-membrane pressure, as compared with pore blockage resistance and intrinsic membrane resistance. In contrast, the pore blockage resistance became dominant in QQ MBRs (>40%).
Original language | English |
---|---|
Pages (from-to) | 40-47 |
Number of pages | 8 |
Journal | Chemosphere |
Volume | 182 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Elsevier Ltd
ASJC Scopus Subject Areas
- Environmental Engineering
- General Chemistry
- Environmental Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis
Keywords
- Biofouling
- Membrane bioreactor (MBR)
- Organic loading rate (OLR)
- Quorum quenching
- Quorum sensing