Insights to Carrier-Phonon Interactions in Lead Halide Perovskites via Multi-Pulse Manipulation

Minjun Feng, Senyun Ye, Jia Wei Melvin Lim, Yuanyuan Guo, Rui Cai, Qiannan Zhang, Huajun He, Tze Chien Sum*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein–Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO, for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.

Original languageEnglish
Article number2301831
JournalSmall
Volume19
Issue number40
DOIs
Publication statusPublished - Oct 4 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Wiley-VCH GmbH.

ASJC Scopus Subject Areas

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Keywords

  • carrier phonon interaction
  • hot carrier cooling
  • perovskite
  • phonon bottleneck
  • pump push probe spectroscopy

Fingerprint

Dive into the research topics of 'Insights to Carrier-Phonon Interactions in Lead Halide Perovskites via Multi-Pulse Manipulation'. Together they form a unique fingerprint.

Cite this