Abstract
This study compared the performance of an anaerobic fluidized bed membrane bioreactor (AFMBR)-zeolite adsorption-reverse osmosis (RO) system and an anoxic-aerobic MBR-RO system for municipal wastewater reclamation. Both MBR-RO systems were operated in parallel with the same operating conditions. The results showed that the MBR systems achieved excellent organic removals (>95%) and the anoxic-aerobic MBR could also remove ∼57% of soluble total nitrogen. Compared to the aerobic MBR, the AFMBR displayed better membrane performance with less energy consumption, attributed to effective membrane scouring by liquid-fluidized GAC particles. Furthermore, a zeolite column was employed to remove ammonia in the AFMBR permeate, which ensured comparable organic and nitrogen levels in the feeds to RO units in the two processes. Although less organic substances and microbial cells were accumulated on the RO membrane fed with AFMBR-zeolite column effluent, its fouling rate (∼6.5 ± 2.2 bar/day) was significantly greater than that fed with anoxic-aerobic MBR permeate (∼1.1 ± 1.5 bar/day). This may be associated with more severe inorganic colloidal fouling on the RO membrane, illustrated by an electrical impedance spectroscopy fouling monitoring system.
Original language | English |
---|---|
Article number | 125569 |
Journal | Chemosphere |
Volume | 245 |
DOIs | |
Publication status | Published - Apr 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Ltd
ASJC Scopus Subject Areas
- Environmental Engineering
- Environmental Chemistry
- General Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis
Keywords
- Ammonia adsorption
- Anaerobic fluidized bed membrane bioreactor
- Membrane bioreactor
- Membrane fouling
- Reverse osmosis
- Wastewater reclamation