Abstract
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the high charge carrier concentration of graphene. This study is devoted to fabricating the filmlike composite by a facile thermal decomposition method and investigating the relationship among contact area, polarization intensity, and the type of metal oxide. Because of the high-frequency polarization effect, the composites presented excellent electromagnetic wave attenuation ability. It is shown that the optimal effective frequency bandwidth of graphene/metal oxide was close to 7.0 GHz at a thin coating layer of 2.0 mm. The corresponding reflection loss value was nearly -22.1 dB. Considering the attenuation mechanism, interface polarization may play a key role in the microwave-absorbing ability.
Original language | English |
---|---|
Pages (from-to) | 5660-5668 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 6 |
DOIs | |
Publication status | Published - Feb 15 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
Keywords
- contact area
- effective absorption frequency
- electromagnetic interference
- interface polarization
- metal oxide granular film