Abstract
Optical theranostic nanoagents that seamlessly and synergistically integrate light-generated signals with photothermal or photodynamic therapy can provide opportunities for cost-effective precision medicine, while the potential for clinical translation requires them to have good biocompatibility and high imaging/therapy performance. We herein report an intraparticle molecular orbital engineering approach to simultaneously enhance photoacoustic brightness and photothermal therapy efficacy of semiconducting polymer nanoparticles (SPNs) for in vivo imaging and treatment of cancer. The theranostic SPNs have a binary optical component nanostructure, wherein a near-infrared absorbing semiconducting polymer and an ultrasmall carbon dot (fullerene) interact with each other to induce photoinduced electron transfer upon light irradiation. Such an intraparticle optoelectronic interaction augments heat generation and consequently enhances the photoacoustic signal and maximum photothermal temperature of SPNs by 2.6- and 1.3-fold, respectively. With the use of the amplified SPN as the theranostic nanoagent, it permits enhanced photoacoustic imaging and photothermal ablation of tumor in living mice. Our study thus not only introduces a category of purely organic optical theranostics but also highlights a molecular guideline to amplify the effectiveness of light-intensive imaging and therapeutic nanosystems.
Original language | English |
---|---|
Pages (from-to) | 4472-4481 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 26 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- photoacoustic imaging
- photothermal therapy
- semiconducting polymer nanoparticles
- theranostic