Abstract
Two cyano oligo-phenylene-vinylenes [α-CNOPV and β-CNOPV] distinguished by the position of cyano (CN) group at the vinylic double bond were synthesized. The acceptor oligomer CNOPVs were blended with poly(2-methoxy-5-(2′-ethyl-hexyloxy)-p-phenylenevinylene) MEH-PPV to achieve α and β blends. The pronounced influence of cyano position on the photophysical and morphological properties of blends was observed through UV-vis absorption, photoluminescence and atomic force microscopy. The optical characterization suggests wider spectral photon harvesting in α blends and more planar conformation of molecules in β blends. The steady-state and time-resolved photoluminescence study provides evidence for efficient energy transfer from α-CNOPV to MEH-PPV. On the other hand, the 3:1 β blend exhibits quenching of PL intensity indicative of charge transfer. In addition, the feasibility of MEH-PPV:CNOPV blends in organic photovoltaic devices have been investigated. The initial device parameters show that power conversion efficiency is as high as 0.05% in β 1:1 devices. The photovoltaic efficiencies were limited by weak exciton dissociation in α blends while poor morphology restricted the efficiency in β blends.
Original language | English |
---|---|
Pages (from-to) | 5292-5299 |
Number of pages | 8 |
Journal | Thin Solid Films |
Volume | 518 |
Issue number | 18 |
DOIs | |
Publication status | Published - Jul 1 2010 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry
Keywords
- CN-PPV
- Energy transfer
- MEH-PPV
- Photovoltaic cells
- Polymer-oligomer blend
- Transient photoluminescence