Abstract
Transition metal phosphides are promising alternatives to the precious metal catalysts for various electrocatalysis applications. Controllable and precise surface engineering of electrocatalysts is the key challenge to enhance their performance. Herein, we demonstrate an ion-exchange strategy to produce cobalt phosphide nanowires which have a conductive core and a thickness-controlled surface layer with sulfur dopants, phosphorus vacancies, and amorphous domains. They are applied for hydrogen evolution reaction with high stability, achieving a current density of 100 mA cm-2 at an overpotential of 114 mV. Based on both comprehensive state-of-the-art experimental characterizations and theoretical investigations, the excellent catalytic performance is attributed to increased active sites, facilitated charge transfer and transport, as well as weakened H adsorption and strengthened H2O adsorption due to the synergistic effects of S dopants and P vacancies.
Original language | English |
---|---|
Article number | 105347 |
Journal | Nano Energy |
Volume | 78 |
DOIs | |
Publication status | Published - Dec 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Elsevier Ltd
ASJC Scopus Subject Areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science
- Electrical and Electronic Engineering
Keywords
- Confined doping
- Electrolysis
- Hydrogen evolution
- Surface engineering
- Transition metal phosphide