Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters

Tianran Zhang, Dengping Lyu, Wei Xu, Xuan Feng, Ran Ni*, Yufeng Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Janus particles, which have an attractive patch on the otherwise repulsive surface, have been commonly employed for anisotropic colloidal assembly. While current methods of particle synthesis allow for control over the patch size, they are generally limited to producing dome-shaped patches with a high symmetry (C). Here, we report on the synthesis of Janus particles with patches of various tunable shapes, having reduced symmetries ranging from C2v to C3v and C4v. The Janus particles are synthesized by partial encapsulation of an octahedral metal-organic framework particle (UiO-66) in a polymer matrix. The extent of encapsulation is precisely regulated by a stepwise, asymmetric dewetting process that exposes selected facets of the UiO-66 particle. With depletion interaction, the Janus particles spontaneously assemble into colloidal clusters reflecting the particles’ shapes and patch symmetries. We observe the formation of chiral structures, whereby chirality emerges from achiral building blocks. With the ability to encode symmetry and directional bonding information, our strategy could give access to more complex colloidal superstructures through assembly.

Original languageEnglish
Article number8494
JournalNature Communications
Volume14
Issue number1
DOIs
Publication statusPublished - Dec 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters'. Together they form a unique fingerprint.

Cite this