Joint face representation adaptation and clustering in videos

Zhanpeng Zhang, Ping Luo, Chen Change Loy, Xiaoou Tang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Citations (Scopus)

Abstract

Clustering faces in movies or videos is extremely challenging since characters’ appearance can vary drastically under different scenes. In addition, the various cinematic styles make it difficult to learn a universal face representation for all videos. Unlike previous methods that assume fixed handcrafted features for face clustering, in this work, we formulate a joint face representation adaptation and clustering approach in a deep learning framework. The proposed method allows face representation to gradually adapt from an external source domain to a target video domain. The adaptation of deep representation is achieved without any strong supervision but through iteratively discovered weak pairwise identity constraints derived from potentially noisy face clustering result. Experiments on three benchmark video datasets demonstrate that our approach generates character clusters with high purity compared to existing video face clustering methods, which are either based on deep face representation (without adaptation) or carefully engineered features.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
PublisherSpringer Verlag
Pages236-251
Number of pages16
ISBN (Print)9783319464862
DOIs
Publication statusPublished - 2016
Externally publishedYes
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: Oct 8 2016Oct 16 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9907 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period10/8/1610/16/16

Bibliographical note

Publisher Copyright:
© Springer International Publishing AG 2016.

ASJC Scopus Subject Areas

  • Theoretical Computer Science
  • General Computer Science

Keywords

  • Convolutional network
  • Face clustering
  • Face recognition
  • Transfer learning

Cite this